题目链接:
简单数学题。
假设(nle m),那么枚举正方形边长(1le ile n),有:
(F(n,m)=sum_{i=1}^nlimits (n-i+1)(m-i+1))
(=sum_{i=1}^nlimits nm-sum_{i=1}^nlimits ni+sum_{i=1}^nlimits n-sum_{i=1}^nlimits im+sum_{i=1}^nlimits i^2-sum_{i=1}^nlimits i+sum_{i=1}^nlimits m-sum_{i=1}^nlimits i+sum_{i=1}^nlimits 1)
(=n^2m-nfrac{n(n+1)}{2}+n^2-mfrac{n(n+1)}{2}+frac{n(n+1)(2n+1)}{6}-frac{n(n+1)}{2}+nm-frac{n(n+1)}{2}+n)
(=frac{3n^2m+3nm-n^3+n}{6})
那么枚举(n(F(n,n)le x)),求出(m)即可。
时间复杂度 (O(sqrt[3]{x}))
代码:
#include <cstdio>
typedef long long ll;
typedef unsigned long long ull;
ull F(const ull n,const ull m)
{return (3*n*n*m+3*n*m-n*n*n+n)/6;}
int s,an;
ull x,a1[1000005],a2[1000005];
int main()
{
scanf("%llu",&x);
for(ull n=1;F(n,n)<=x;++n)
{
if((6*x+n*n*n-n)%(3*n*n+3*n))continue;
ull m=(6*x+n*n*n-n)/(3*n*n+3*n);
a1[++an]=n,a2[an]=m,s+=1+(n!=m);
}
printf("%d
",s);
for(int i=1;i<=an;++i)printf("%llu %llu
",a1[i],a2[i]);
for(int i=an-(s&1);i>=1;--i)printf("%llu %llu
",a2[i],a1[i]);
return 0;
}