• 周二. 10 月 8th, 2024

5G编程聚合网

5G时代下一个聚合的编程学习网

热门标签

【数论】Baby Step Giant Step

admin

11 月 28, 2021

被数论怒虐了一天 心力憔悴啊 感觉脑细胞已经快消耗殆尽了>_< 但是今天还是会了很多之前觉得特别神的东西

比如BSGS 之前听了两遍 好像都因为听得睡着了没听懂-。- 今天终于硬着头皮学会了~ 做个总结吧 免得又忘记- –

BSGS:

BSGS就是求 A^x=B(mod C) 0<=x<C的解(C为素数)

做一个转换 设m*i+j=x (m=trunc(sqrt(C)))

将A^i(0<=i<m) 存入hash表中(i,A^i)

这样我们就能O(1)求出A^x=B 对应的x的值

设AA=(A^m^i)mod C 枚举i的值(0<=i<m)

原方程就变为 AA*(A^j)=B(mod C)

因为C为素数 所以(AA,C)=1

故 可以用拓展欧几里德求出A^j值为多少 再在hash中找A^j对应的j 答案get

其实不难发现这是个神奇的分块思想 将n分为√n块

预处理使得计算每块的复杂度降为O(1) 到达加速

拓展BSGS:

上题中有一个限制条件 C为素数 如果没有这个条件要怎么做呢

以下是AC大神的做法 由AK大神跟我讲解(orz两个神犇)

A^x=B(mod C)

先将这个方程转换为 A^x+Cy=B

设 A’=A/(A,C),C’=C/((A,C)^z) (C’与(A,C)^z互质)

将方程左右都除以(A,C)^z (如果B不能整除(A,C)^z 则无解)

会得到:

(A’^z)*A^(x-z)+C’y=B/((A,C)^z)

这时 将A’^z视为系数 A与C’互质就能用上面的方法求解了

发表回复